English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/157267
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Scaling DBSCAN-like Algorithms for Event Detection Systems in Twitter

AutorCapdevila, Joan ; Pericacho, Gonzalo; Torres, Jordi; Cerquides, Jesús
Palabras claveEvent detection
Apache Spark
Parallel algorithm
Data clustering
Fecha de publicación2016
CitaciónAlgorithms and Architectures for Parallel Processing. ICA3PP 2016. LNCS 10048: 356- 373 (2016)
ResumenThe increasing use of mobile social networks has lately transformed news media. Real-world events are nowadays reported in social networks much faster than in traditional channels. As a result, the autonomous detection of events from networks like Twitter has gained lot of interest in both research and media groups. DBSCAN-like algorithms constitute a well-known clustering approach to retrospective event detection. However, scaling such algorithms to geographically large regions and temporarily long periods present two major shortcomings. First, detecting real-world events from the vast amount of tweets cannot be performed anymore in a single machine. Second, the tweeting activity varies a lot within these broad space-time regions limiting the use of global parameters. Against this background, we propose to scale DBSCAN-like event detection techniques by parallelizing and distributing them through a novel density-aware MapReduce scheme. The proposed scheme partitions tweet data as per its spatial and temporal features and tailors local DBSCAN parameters to local tweet densities. We implement the scheme in Apache Spark and evaluate its performance in a dataset composed of geo-located tweets in the Iberian peninsula during the course of several football matches. The results pointed out to the benefits of our proposal against other state-of-the-art techniques in terms of speed-up and detection accuracy.
Identificadoresdoi: https://doi.org/10.1007/978-3-319-49583-5_27
isbn: 978-3-319-49582-8
Aparece en las colecciones: (IIIA) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.