English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/157162
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Potential natural vegetation and pre-anthropic pollen records on the Azores Islands in a Macaronesian context

AutorRull, Valentí ; Connor, S. E.; Elías. R. B.
Palabras claveAzores Islands
Canary Islands
potential natural vegetation
pre-anthropic vegetation
Fecha de publicaciónnov-2017
EditorJohn Wiley & Sons
CitaciónJournal of Biogeography, 44(11): 2437-2440 (2017)
ResumenThis paper discusses the concept of potential natural vegetation (PNV) in the light of the pollen records available to date for the Macaronesian biogeographical region, with emphasis on the Azores Islands. The classical debate on the convenience or not of the PNV concept has been recently revived in the Canary Islands, where pollen records of pre-anthropic vegetation seemed to strongly disagree with the existing PNV reconstructions. Contrastingly, more recent PNV model outputs from the Azores Islands show outstanding parallelisms with pre-anthropic pollen records, at least in qualitative terms. We suggest the development of more detailed quantitative studies to compare these methodologies as an opportunity for improving the performance of both. PNV modelling may benefit by incorporating empirical data on past vegetation useful for calibration and validation purposes, whereas palynology may improve past reconstructions by minimizing interpretative biases linked to differential pollen production, dispersal and preservation. © 2017 John Wiley & Sons Ltd
Versión del editorhttp://dx.doi.org/10.1111/jbi.13083
Aparece en las colecciones: (ICTJA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Rull_Journal_of_Biogeography_44_11_2437_preprint.pdf406,85 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.