English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15682
Título

The Magnus expansion and some of its applications

AutorBlanes, S.; Casas, Fernando; Oteo, José Ángel; Ros Pallarés, José
Fecha de publicación25-nov-2008
EditorElsevier
CitaciónPhysics Reports 470 (2009), 151-238
ResumenApproximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem, shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to build up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving, at any order, certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion, in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature
Versión del editorhttp://dx.doi.org/10.1016/j%2Ephysrep%2E2008%2E11%2E001
URIhttp://hdl.handle.net/10261/15682
DOI10.1016/j.physrep.2008.11.001
ISSN0370-1573
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
blanes.pdf1,31 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.