Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156489
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorVilarrasa, Víctores_ES
dc.contributor.authorRutqvist, Jonnyes_ES
dc.date.accessioned2017-10-20T11:24:19Z-
dc.date.available2017-10-20T11:24:19Z-
dc.date.issued2017-02-01-
dc.identifier.citationEarth-Science Reviews: 165: 245-256 (2017)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/156489-
dc.description.abstractOne of the most promising ways to significantly reduce greenhouse gases emissions, while carbon-free energy sources are developed, is Carbon Capture and Storage (CCS). Non-isothermal effects play a major role in all stages of CCS. In this paper, we review the literature on thermal effects related to CCS, which is receiving an increasing interest as a result of the awareness that the comprehension of non-isothermal processes is crucial for a successful deployment of CCS projects. We start by reviewing CO2 transport, which connects the regions where CO2 is captured with suitable geostorage sites. The optimal conditions for CO2 transport, both onshore (through pipelines) and offshore (through pipelines or ships), are such that CO2 stays in liquid state. To minimize costs, CO2 should ideally be injected at the wellhead in similar pressure and temperature conditions as it is delivered by transport. To optimize the injection conditions, coupled wellbore and reservoir simulators that solve the strongly non-linear problem of CO2 pressure, temperature and density within the wellbore and non-isothermal two-phase flow within the storage formation have been developed. CO2 in its way down the injection well heats up due to compression and friction at a lower rate than the geothermal gradient, and thus, reaches the storage formation at a lower temperature than that of the rock. Inside the storage formation, CO2 injection induces temperature changes due to the advection of the cool injected CO2, the Joule-Thomson cooling effect, endothermic water vaporization and exothermic CO2 dissolution. These thermal effects lead to thermo-hydro-mechanical-chemical coupled processes with non-trivial interpretations. These coupled processes also play a relevant role in “Utilization” options that may provide an added value to the injected CO2, such as Enhanced Oil Recovery (EOR), Enhanced Coal Bed Methane (ECBM) and geothermal energy extraction combined with CO2 storage. If the injected CO2 leaks through faults, the caprock or wellbores, strong cooling will occur due to the expansion of CO2 as pressure decreases with depth. Finally, we conclude by identifying research gaps and challenges of thermal effects related to CCS. © 2016 Elsevier B.V.es_ES
dc.description.sponsorshipV.V. acknowledges financial support from the “TRUST” project (European Commission Seventh Framework Programme FP7/2007–2013 under grant agreement n 309607) and from “FracRisk” project (European Community's Horizon 2020 Framework Programme H2020-EU.3.3.2.3 under grant agreement n 640979). This work was funded in part by the Assistant Secretary for Fossil Energy, National Energy Technology Laboratory, National Risk Assessment Partnership, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. The authors would like to thank Patricia Lopez for drawing Fig. 1.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/309607es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/640979es_ES
dc.relation.isversionofPostprintes_ES
dc.rightsopenAccessen_EN
dc.subjectCaprock integrityes_ES
dc.subjectCO2 leakagees_ES
dc.subjectCO2 storagees_ES
dc.subjectCO2 transportes_ES
dc.subjectInduced microseismicityes_ES
dc.subjectInjection schemeses_ES
dc.subjectThermo-hydro-mechanical-chemical couplingses_ES
dc.subjectWell integrityes_ES
dc.titleThermal effects on geologic carbon storagees_ES
dc.typeartículoes_ES
dc.identifier.doi10.1016/j.earscirev.2016.12.011-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversion10.1016/j.earscirev.2016.12.011es_ES
dc.embargo.terms2019-02-01es_ES
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.contributor.funderEuropean Commissiones_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.grantfulltextopen-
item.languageiso639-1en-
Aparece en las colecciones: (IDAEA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Thermal effects on geologic carbon storage.pdf851,63 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

87
checked on 30-mar-2024

WEB OF SCIENCETM
Citations

70
checked on 17-feb-2024

Page view(s)

301
checked on 23-abr-2024

Download(s)

575
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons