Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156435
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Long-term thermal effects on injectivity evolution during CO2 storage

AutorVilarrasa, Víctor CSIC ORCID ; Rinaldi, Antonio Pio; Rutqvist, Jonny
Palabras claveCooling
Fracture aperture
Permeability increase
Thermo-hydro-mechanical coupling
Fecha de publicaciónsep-2017
EditorElsevier
CitaciónInternational Journal of Greenhouse Gas Control 64: 314-322 (2017)
ResumenCarbon dioxide (CO2) is likely to reach the bottom of injection wells at a colder temperature than that of the storage formation, causing cooling of the rock. This cooling, together with overpressure, tends to open up fractures, which may enhance injectivity. We investigate cooling effects on injectivity enhancement by modeling the In Salah CO2 storage site and a theoretical, long-term injection case. We use stress-dependent permeability functions that predict an increase in permeability as the effective stress acting normal to fractures decreases. Normal effective stress can decrease either due to overpressure or cooling. We calibrate our In Salah model, which includes a fracture zone perpendicular to the well, obtaining a good fitting with the injection pressure measured at KB-502 and the rapid CO2 breakthrough that occurred at the observation well KB-5 located 2 km away from the injection well. CO2 preferentially advances through the fracture zone, which becomes two orders of magnitude more permeable than the rest of the reservoir. Nevertheless, the effect of cooling on the long-term injectivity enhancement is limited in pressure dominated storage sites, like at In Salah, because most of the permeability enhancement is due to overpressure. However, thermal effects enhance injectivity in cooling dominated storage sites, which may decrease the injection pressure by 20%, saving a significant amount of compression energy all over the duration of storage projects. Overall, our simulation results show that cooling has the potential to enhance injectivity in fractured reservoirs. © 2017 Elsevier Ltd
Versión del editor10.1016/j.ijggc.2017.07.019
URIhttp://hdl.handle.net/10261/156435
DOI10.1016/j.ijggc.2017.07.019
Aparece en las colecciones: (IDAEA) Artículos




Ficheros en este ítem:
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

45
checked on 24-mar-2024

WEB OF SCIENCETM
Citations

42
checked on 25-feb-2024

Page view(s)

253
checked on 28-mar-2024

Download(s)

436
checked on 28-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons