English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156187
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Light scattering from random rough dielectric surfaces

AutorJ. A. Sánchez-Gil and M. Nieto-Vesperinas
Fecha de publicaciónmar-1991
ResumenA theoretical and numerical study is made of the scattering of light and other electromagnetic waves from rough surfaces separating vacuum from a dielectric. The extinction theorem, both above and below the surface, is used to obtain the boundary values of the field and its normal derivative. Then we calculate the angular distribution of the ensemble average of intensity of the reflected and transmitted fields. The scattering equations are solved numerically by generating one-dimensional surface profiles through a Monte Carlo method. The effect of roughness σ and correlation distance T on the aforementioned angular distribution, as well as on the reflectance, is analyzed. Enhanced backscattering and new transmission effects are observed, also depending on the permittivity. The ratio σ/T is large in all cases studied, and thus no analytical approximation, such as the Kirchhoff approximation (KA) and small perturbation methods, could a priori be expected to hold. We find, however, that the range of validity of the KA can be much broader than that previously found in perfect conductors.
Versión del editorA theoretical and numerical study is made of the scattering of light and other electromagnetic waves from rough surfaces separating vacuum from a dielectric. The extinction theorem, both above and below the surface, is used to obtain the boundary values of the field and its normal derivative. Then we calculate the angular distribution of the ensemble average of intensity of the reflected and transmitted fields. The scattering equations are solved numerically by generating one-dimensional surface profiles through a Monte Carlo method. The effect of roughness σ and correlation distance T on the aforementioned angular distribution, as well as on the reflectance, is analyzed. Enhanced backscattering and new transmission effects are observed, also depending on the permittivity. The ratio σ/T is large in all cases studied, and thus no analytical approximation, such as the Kirchhoff approximation (KA) and small perturbation methods, could a priori be expected to hold. We find, however, that the range of validity of the KA can be much broader than that previously found in perfect conductors.
URIhttp://hdl.handle.net/10261/156187
DOI10.1364/JOSAA.8.001270
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
JOSAA_91.pdf1,71 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.