English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156073
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Link Prediction in Evolutionary Graphs - The Case Study of the CCIA Network

AutorAdrian, Kemo ; Chocron, Paula; Confalonieri, Roberto; Ferrer, Xavier ; Giraldez-Cru, Jesus
Palabras claveEvolutionary networks
Link prediction
CCIA coauthorship network
Fecha de publicación19-oct-2016
EditorIOS Press
Citación19th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2016; Frontiers in Artificial Intelligence and Applications, V. 288, 2016: 187-196
ResumenStudying the prediction of new links in evolutionary networks is a captivating question that has received the interest of different disciplines. Link prediction allows to extract missing information and evaluate network dynamics. Some algorithms that tackle this problem with good performances are based on the sociability index, a measure of node interactions over time. In this paper, we present a case study of this predictor in the evolutionary graph that represents the CCIA co-authorship network from 2005 to 2015. Moreover, we present a generalized version of this sociability index, that takes into account the time in which such interactions occur. We show that this new index outperforms existing predictors. Finally, we use it in order to predict new co-authorships for CCIA 2016. © 2016 The authors and IOS Press. All rights reserved.
URIhttp://hdl.handle.net/10261/156073
DOI10.3233/978-1-61499-696-5-187
Identificadoresdoi: 10.3233/978-1-61499-696-5-187
issn: 09226389
isbn: 978-161499695-8
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.