English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/156055
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Connecting ABT with a SAT Solver

AutorGiraldez-Cru, Jesus; Martin-Sanchez, Guillermo; Meseguer, Pedro
Palabras claveClause learning
Distributed SAT
ABT
Fecha de publicación29-ago-2016
EditorIOS Press
Citación48th European Starting AI Researcher Symposium, STAIRS 2016; Frontiers in Artificial Intelligence and Applications, 284, 2016: 179-184
ResumenMany real-world problems are encoded into SAT instances and efficiently solved by CDCL (Conflict-Driven Clause Learning) SAT solvers. However, some scenarios require distributed problem solving approaches. Privacy is often the main reason. This motivates the need to solve distributed SAT problems We analyze how this problem can be tacked in an efficient way, and present ABTSAT, a new version of the ABT (Asynchronous Backtracking) algorithm adapted to solve distributed SAT instances. It combines ABT execution with calls to CDCL SAT solvers and clause learning. ABTSAT is sound and complete, properties inherited from ABT, and solves local problems efficiently by using CDCL SAT solvers. © 2016 The authors and IOS Press.
URIhttp://hdl.handle.net/10261/156055
DOI10.3233/978-1-61499-682-8-179
Identificadoresdoi: 10.3233/978-1-61499-682-8-179
issn: 09226389
isbn: 978-161499681-1
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
STAIRS 2016_FAIA284(179-84).pdf186,09 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.