English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155748
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Polynomial Similarity Transformation Theory: From coupled cluster doubles to number projected BCS

AutorDukelsky, Jorge
Fecha de publicación14-mar-2016
CitaciónFUSTIPEN (2016)
ResumenWe present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The effective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1 % across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
DescripciónFuture directions for nuclear structure and reaction theories: Ab initio approaches for 2020 (FUSTIPEN); GANIL, Caen (France) March 14-18, 2016; http://fustipen.ganil.fr/conferences/2016/workshops
URIhttp://hdl.handle.net/10261/155748
Aparece en las colecciones: (CFMAC-IEM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Polynomial similarity.pdf555,57 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.