English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/155526
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Airborne Hyperspectral Images and Ground-Level Optical Sensors As Assessment Tools for Maize Nitrogen Fertilization

AuthorsQuemada, Miguel; Gabriel, José Luis; Zarco-Tejada, Pablo J.
Issue Date31-Mar-2014
PublisherMultidisciplinary Digital Publishing Institute
CitationRemote Sensing 6 (4): 2940-2962 (2014)
AbstractEstimating crop nitrogen (N) status with sensors can be useful to adjust fertilizer levels to crop requirements, reducing farmers’ costs and N losses to the environment. In this study, we evaluated the potential of hyperspectral indices obtained from field data and airborne imagery for developing N fertilizer recommendations in maize (<i>Zea may</i>s L.). Measurements were taken in a randomized field experiment with six N fertilizer rates ranging from zero to 200 kg∙N∙ha<sup>−1 </sup>and four replications on two different dates (before the second fertilizer application and at flowering) in 2012. Readings at ground level were taken with SPAD<sup>®</sup>, Dualex<sup>®</sup> and Multiplex<sup>®</sup> sensors, and airborne data were acquired by flying a hyperspectral and a thermal sensor 300 m over the experimental site. The hyperspectral imagery was used to calculate greenness, chlorophyll and photochemical indices for each plot. The Pearson coefficient was used to quantify the correlation between sensor readings and agronomic measurements. A statistical procedure based on the N-sufficient index was used to determine the accuracy of each index at distinguishing between N-deficient and N-sufficient plots. Indices based on airborne measurements were found to be as reliable as measurements taken with ground-level equipment at assessing crop N status and predicting yield at flowering. At stem elongation, the reflectance ratio, R750/R710, and fluorescence retrieval (SIF760) were the only indices that yielded significant results when compared to crop yield. Field-level SPAD<sup> </sup>readings, the airborne R750/R710 index and SIF760 had the lowest error rates when distinguishing N-sufficient from N-deficient treatments, but error reduction is still recommended before commercial field application.
Publisher version (URL)http://doi.org/10.3390/rs6042940
Identifiersdoi: 10.3390/rs6042940
Appears in Collections:(IAS) Artículos
Files in This Item:
File Description SizeFormat 
remotesensing-06-02940.pdf1,28 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.