English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155503
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Local preconditioning and variational multiscale stabilization for Euler compressible steady flow

AutorMoragues Ginard, Margarida; Vazquez, Mariano; Houzeaux, Guillaume
Palabras claveFinite elements
Local preconditioning
Steady flow problems
Variational multiscale method
Euler equations
Compressible flow
Fecha de publicación2016
EditorElsevier
CitaciónComputer Methods in Applied Mechanics and Engineering 305: 468- 500 (2016)
ResumenThis paper introduces a preconditioned variational multiscale stabilization (P-VMS) method for compressible flows. In this introductory paper we focus on inviscid flow and steady state problems. The Euler equations are solved on fully unstructured grids and discretized using the finite element method. The P-VMS method can be decomposed into three parts. First, a local preconditioner is applied to the continuous equations to reduce the stiffness while covering a wide range of Mach numbers. Then, the resulting preconditioned system is discretized in space using finite elements and stabilized with a variational multiscale stabilization method adapted for the preconditioned equations. In this paper, the solution is advanced in time using a fully explicit time discretization, although P-VMS is general and can be applied to fully implicit solvers. The proposed method is assessed by comparing convergence and accuracy of the solutions between the non-preconditioned and preconditioned cases, in particular for van Leer-Lee-Roe's (1991) and Choi-Merkle's (1993) preconditioners, in some selected examples covering a large range of Mach numbers. © 2016 Elsevier B.V. All rights reserved.
URIhttp://hdl.handle.net/10261/155503
DOI10.1016/j.cma.2016.02.027
Identificadoresdoi: 10.1016/j.cma.2016.02.027
issn: 0045-7825
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.