English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155501
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Fourier stability analysis and local Courant number of the preconditioned variational multiscale stabilization (P-VMS) for Euler compressible flow

AutorMoragues Ginard, Margarida; Bernardino, Gabriel; Vazquez, Mariano; Houzeaux, Guillaume
Palabras claveVariational multiscale stabilization
Local preconditioning
Compressible flow, Fourier stability analysis, Local Courant–Friedrichs–Lewy number
Finite elements
Fecha de publicación2016
EditorElsevier
CitaciónComputer Methods in Applied Mechanics and Engineering 301: 28- 51 (2016)
ResumenThe results of a Fourier stability analysis of the preconditioned variational multiscale stabilization (P-VMS) method introduced in Moragues et al. (2015) are presented in this paper. P-VMS combines a variational multiscale stabilized finite elements discretization together with local preconditioning. In this work, we deal with the P-VMS method using van Leer-Lee-Roe's (vanLeer et al., 1991) and Choi-Merkle's (Choi and Merkle, 1993) local preconditioners. We solve the Euler equations of compressible flow for steady problems. We concentrate on explicit time integration schemes. The stability analysis is performed on a two dimensional simplified problem with a structured mesh and its conclusions are applied to two and three dimensional general problems with unstructured meshes. As a result of this analysis a local Courant-Friedrichs-Lewy number is defined for the computation of the time step. The convergence rate is evaluated, and compared with the traditional constant Courant-Friedrichs-Lewy number for various test cases spanning a large range of Mach numbers. © 2015 Elsevier B.V.
URIhttp://hdl.handle.net/10261/155501
DOI10.1016/j.cma.2015.12.008
Identificadoresdoi: 10.1016/j.cma.2015.12.008
issn: 0045-7825
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.