English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155216
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

On model predictive control for economic and robust operation of generalised flow-based networks

AutorGrosso, J. M.
DirectorOcampo-Martinez, Carlos; Puig, Vicenç
Fecha de publicación2015
EditorUniversidad Politécnica de Cataluña
Resumen[EN]: This thesis is devoted to design Model Predictive Control (MPC) strategies aiming to enhance the management of constrained generalised flow-based networks, with special attention to the economic optimisation and robust performance of such systems. Several control schemes are developed in this thesis to exploit the available economic information of the system operation and the disturbance information obtained from measurements and forecasting models. Dynamic network flows theory is used to develop control-oriented models that serve to design MPC controllers specialised for flow networks with additive disturbances and periodically time-varying dynamics and costs. The control strategies developed in this thesis can be classified in two categories: centralised MPC strategies and non-centralised MPC strategies. Such strategies are assessed through simulations of a real case study: the Barcelona drinking water network (DWN). Regarding the centralised strategies, different economic MPC formulations are first studied to guarantee recursive feasibility and stability under nominal periodic flow demands and possibly time-varying economic parameters and multi-objective cost functions. Additionally, reliability-based MPC, chance-constrained MPC and tree-based MPC strategies are proposed to address the reliability of both the flow storage and the flow transportation tasks in the network. Such strategies allow to satisfy a customer service level under future flow demand uncertainty and to efficiently distribute overall control effort under the presence of actuators degradation. Moreover, soft-control techniques such as artificial neural networks and fuzzy logic are used to incorporate self-tuning capabilities to an economic certainty-equivalent MPC controller. Since there are objections to the use of centralised controllers in large-scale networks, two non-centralised strategies are also proposed. First, a multi-layer distributed economic MPC strategy of low computational complexity is designed with a control topology structured in two layers. In a lower layer, a set of local MPC agents are in charge of controlling partitions of the overall network by exchanging limited information on shared resources and solving their local problems in a hierarchical-like fashion. Moreover, to counteract the loss of global economic information due to the decomposition of the overall control task, a coordination layer is designed to influence non-iteratively the decision of local controllers towards the improvement of the overall economic performance. Finally, a cooperative distributed economic MPC formulation based on a periodic terminal cost/region is proposed. Such strategy guarantees convergence to a Nash equilibrium without the need of a coordinator and relies on an iterative and global communication of local controllers, which optimise in parallel their control actions but using a centralised model of the network.
[ES]: Esta tesis se enfoca en el diseño de estrategias de control predictivo basado en modelos (MPC, por sus siglas en inglés) con la meta de mejorar la gestión de sistemas que pueden ser descritos por redes generalizadas de flujo y que están sujetos a restricciones, enfatizando especialmente en la optimización económica y el desempeño robusto de tales sistemas. De esta manera, varios esquemas de control se desarrollan en esta tesis para explotar tanto la información económica disponible de la operación del sistema como la información de perturbaciones obtenida de datos medibles y de modelos de predicción. La teoría de redes dinámicas de flujo es utilizada en esta tesis para desarrollar modelos orientados a control que sirven para diseñar controladores MPC especializados para la gestión de redes de flujo que presentan tanto perturbaciones aditivas como dinámicas y costos periódicamente variables en el tiempo. Las estrategias de control propuestas en esta tesis se pueden clasificar en dos categorías: estrategias de control MPC centralizado y estrategias de control MPC no-centralizado. Dichas estrategias son evaluadas mediante simulaciones de un caso de estudio real: la red de transporte de agua potable de Barcelona en España. En cuanto a las estrategias de control MPC centralizado, diferentes formulaciones de controladores MPC económicos son primero estudiadas para garantizar factibilidad recursiva y estabilidad del sistema cuya operación responde a demandas nominales de flujo periódico, a parámetros económicos posiblemente variantes en el tiempo y a funciones de costo multi-objetivo. Adicionalmente, estrategias de control MPC basado en fiabilidad, MPC con restricciones probabilísticas y MPC basado en árboles de escenarios son propuestas para garantizar la fiabilidad tanto de tareas de almacenamiento como de transporte de flujo en la red. Tales estrategias permiten satisfacer un nivel de servicio al cliente bajo incertidumbre en la demanda futura, así como distribuir eficientemente el esfuerzo global de control bajo la presencia de degradación en los actuadores del sistema. Por otra parte, técnicas de computación suave como redes neuronales artificiales y lógica difusa se utilizan para incorporar capacidades de auto-sintonía en un controlador MPC económico de certeza-equivalente. Dado que hay objeciones al uso de control centralizado en redes de gran escala, dos estrategias de control no-centralizado son propuestas en esta tesis. Primero, un controlador MPC económico distribuido de baja complejidad computacional es diseñado con una topología estructurada en dos capas. En una capa inferior, un conjunto de controladores MPC locales se encargan de controlar particiones de la red mediante el intercambio de información limitada de los recursos físicos compartidos y resolviendo sus problemas locales de optimización de forma similar a una secuencia jerárquica de solución. Para contrarrestar la pérdida de información económica global que ocurra tras la descomposición de la tarea de control global, una capa de coordinación es diseñada para influenciar no-iterativamente la decisión de los controles locales con el fin de lograr una mejora global del desempeño económico. La segunda estrategia no-centralizada propuesta en esta tesis es una formulación de control MPC económico distribuido cooperativo basado en una restricción terminal periódica. Tal estrategia garantiza convergencia a un equilibrio de Nash sin la necesidad de una capa de coordinación pero requiere una comunicación iterativa de información global entre todos los controladores locales, los cuales optimizan en paralelo sus acciones de control utilizando un modelo centralizado de la red.
DescripciónUniversitat Politècnica de Catalunya. Programa de Doctorat: Automàtica, Robòtica I Visió.
URIhttp://hdl.handle.net/10261/155216
Aparece en las colecciones: (IRII) Tesis
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
flow-based-network.pdf3,51 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.