English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/155203
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Lack of adrenomedullin affects growth and differentation of adult neural stem/progenitor cells.

AuthorsVergaño-Vera, E.; Fernández, A. P.; Hurtado-Chong, A.; Vicario-Abejón, Carlos ; Martínez, A.
KeywordsAdrenomedullin Neural stem/progenitor cells Proliferation Differentiation Conditional knockout Mouse
Issue Date2010
CitationCell and Tissue Research 340: 1- 11 (2010)
AbstractAdrenomedullin (AM) is a peptide hormone involved in the modulation of cellular growth, migration, apoptosis, and angiogenesis. These characteristics suggest that AM is involved in the control of neural stem/progenitor cell (NSPC) biology. To explore this hypothesis, we have obtained NSPC from the olfactory bulb of adult wild-type animals and brain conditional knockouts for adm, the gene that produces AM. Knockout NSPC contain higher levels of hyperpolymerized tubulin and more abundant filopodia than adm-containing cells, resulting in a different morphology in culture, whereas the size of the knockout neurospheres is smaller than that of the wild-types. Proliferation studies have demonstrated that adm-null NSPC incorporate less 5'-bromodeoxyuridine (BrdU) than their wild-type counterparts. In contrast, BrdU studies in the olfactory bulb of adult animals show more labeled cells in adm-null mice that in wild-types, suggesting that a compensatory mechanism exists that guarantees the sufficient production of neural cells in this organ. In NSPC differentiation tests, lack of adm results in significantly lower proportions of neurons and astrocytes and higher proportions of oligodendrocytes. The oligodendrocytes produced from adm-null neurospheres present an immature phenotype with fewer and shorter processes than adm-containing oligodendrocytes. Thus, AM is an important factor in regulating the proliferation and differentiation of adult NSPC and might be used to modulate stem cell renewal and fate in protocols destined to produce neural cells for regenerative therapies.
Identifiersissn: 0302-766X
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.