English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/155179
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorChappuis, Eglantinees_ES
dc.contributor.authorSeriñá, Vanesaes_ES
dc.contributor.authorMartí, Eugèniaes_ES
dc.contributor.authorBallesteros, Enrices_ES
dc.contributor.authorGacia, Esperançaes_ES
dc.date.accessioned2017-09-18T08:29:42Z-
dc.date.available2017-09-18T08:29:42Z-
dc.date.issued2017-
dc.identifier.citationFreshwater Biology : DOI:10.1111/fwb.12996 (2017)es_ES
dc.identifier.issn0046-5070-
dc.identifier.urihttp://hdl.handle.net/10261/155179-
dc.descriptionEste artículo contiene 12 páginas, 6 figuras, 3 tablas.es_ES
dc.description.abstract1. Variability in C and N stable isotopes has been acknowledged to hinder their use as tracers of food sources in the study of trophic interactions in ecosystems. This is particularly so whenever benthic primary production is substantial (variability in d13C) and the ecosystem under study is affected by human impacts (variability in d15N) in aquatic ecosystems. 2. In this study, we aim to better understand the large and often unexplained variability in the natural abundance of d13C and d15N signatures of aquatic plants by analyzing the isotopic composition of plants from 81 lentic systems from NE Spain in relation to extrinsic (alkalinity, pH, nutrient concentrations, water body typology and basin land use) and intrinsic (functional group, carbon assimilation metabolism, elemental composition) predictors. 3. We have encountered significant plasticity in isotopic signatures of aquatic plants associated with the variation in local conditions at the regional scale. The d13C signature varied from 43.1& to 7.5& (35.7& range) and drivers were both intrinsic and extrinsic. The functional group was the most important factor as it is influenced by different carbon sources. Aquatic plants with leaves in contact with the atmosphere (helophytes, free floating and floating attached; 34.8& to 14.6&) responded in a similar way as terrestrial plants. This contrasted with the enriched mean values of rooted submerged plants ( 16.7& to 10.5&) that were more enriched than the described terrestrial C3 range ( 34& to 22&) and completely overlapped the terrestrial C4 range ( 20& to 8&). Concentration of DIC and pH also emerged as important extrinsic factors driving d13C variability. 4. The d15N signature ranged from 5.2& to 20.1& (25.2& range) and the variability was mostly associated with extrinsic factors such as water body type and basin land use, as they influence both the d15N signature and concentration of the dissolved inorganic nitrogen in the aquatic ecosystems. 5. Only one multifactorial model including the functional group (with the largest contribution), DIC and pH was selected as the best model explaining the variability in d13C signatures of aquatic plants. The final model had a relatively large explained deviance and was consistent with the previous unifactorial results. Two different models were selected as the best models explaining variability in d15N signatures of aquatic plants. The models included the geomorphological type of water body as the variable with the largest contribution, and the percentage of either natural or agricultural coverage in the basin. These results are summarized in a conceptual model showing the predictors and their range and direction of variation. 6. This study shows that extrinsic factors are of greater importance in influencing the stable-isotope signatures of aquatic plants compared to terrestrial plants, because of varied sources and an often limited isotopic discrimination.es_ES
dc.description.sponsorshipThis study has been funded by the Consejo Superior de Investigaciones Cient ıficas through the project Intramural CSIC ref. 0065 and by the Spanish Ministry of Science and Innovation through the project entitled Nitrogen stable isotopes in fluvial ecosystems, the role of biotic components as indicators of nitrogen sources and processes (ISONEF, CGL2008-05504-C02-02/BOS).es_ES
dc.language.isoenges_ES
dc.publisherBlackwell Publishinges_ES
dc.relation.isversionofPreprint-
dc.rightsopenAccesses_ES
dc.subjectStableisotope signaturees_ES
dc.subjectFunctional groupes_ES
dc.subjectGeneralized additive modelses_ES
dc.subjectIsotope discriminationes_ES
dc.subjectMacrophytees_ES
dc.titleDecrypting stable-isotope (d13C and d15N) variability in aquatic plantses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1111/fwb.12996-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1111/fwb.12996es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
Appears in Collections:(CEAB) Artículos
Files in This Item:
File Description SizeFormat 
Pre-print gacia.pdf1,86 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.