English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/155122
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Calcium looping CO2 capture system for back-up power plants

AuthorsÁlvarez Criado, Yolanda ; Arias Rozada, Borja ; Abanades García, Juan Carlos
Issue Date25-Aug-2017
PublisherRoyal Society of Chemistry (UK)
CitationEnergy and Environmental Science 10: 1994-2004 (2017)
AbstractThis paper analyses a CO2 capture system based on calcium looping, designed for power plants that operate with very low capacity factors and large load fluctuations, including shut-down and start-up periods. This can be achieved by decoupling the operation of the carbonator and calciner reactors and connecting them to piles filled with CaO or CaCO3. When the power plant enters into operation, calcined solids are fed into the carbonator to provide the necessary flow of CaO for capturing CO2 and storing the carbonated solids. An oxy-CFB calciner designed to have a modest thermal capacity and operate continuously refills the CaO pile. Mass and energy balances of the entire system, combined with state-of-the-art performance criteria for reactor design, have been solved to identify suitable operating windows. An analysis of the effect of the CaO reactivity of the material stored in the piles indicates that temperatures of around 500–600 °C in the carbonator are compatible with the storage of solids at low temperature (<250 °C). This, together with the low inherent cost of the material, allows large piles of stored material. Electricity costs between 0.13–0.15 $ per kWhe are possible for the system proposed in contrast to standard CaL systems where the cost would increase to above 0.19 $ per kWhe when forced to operate at low capacity. The proposed concept could be integrated into existing power plants operating as back-ups in renewable energy systems in preference to other CO2 capture technologies that are heavily penalized when forced to operate under low capacity factors.
Publisher version (URL)https://doi.org/10.1039/C7EE01505D
Appears in Collections:(INCAR) Artículos
Files in This Item:
File Description SizeFormat 
Calcium_looping_Criado_2017.pdf2,12 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.