English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/155064
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Application of artificial neural networks as a tool for moisture prediction in microbially colonized halite in the Atacama Desert

AutorWierzchos, K.; Cancilla, J.C.; Torrecilla, J.S.; Díaz-Rodríguez, P.; Davila, A.F.; Ascaso, Carmen ; Nienow, J.; McKay, C.P.; Wierzchos, Jacek
Fecha de publicación2015
EditorJohn Wiley & Sons
CitaciónJournal of Geophysical Research - Part G - BioGeo 120(6): 1018-1026 (2015)
ResumenThe Atacama Desert is the driest and one of the most life-limiting places on Earth. Despite the extreme conditions, microbial endolithic communities have been found inside halite rocks. The presence of these microbial communities is possible due to the hygroscopic properties of evaporitic rocks composed of sodium chloride. It is important to elucidate every possible water source in such a hyperarid environment. Therefore, in the present study, an artificial neural network (ANN) based model has been designed to predict the presence of liquid water on the surface of halite pinnacles. The model predicts the moisture formation using two basic meteorological variables, air temperature, and air relative humidity. ANNs have been successfully employed for the first time as a tool for predicting the appearance of liquid water, a key factor for the endolithic microbial communities living in the driest part of the Atacama Desert. The model developed is able to correctly predict the formation of water on the surface of the halite pinnacles 83% of the cases. We anticipate the future application of this model as an important tool for the prediction of the water availability and therefore potential habitability of lithic substrates in extreme environments on Earth and perhaps elsewhere. Key Point Prediction of moisture in halite from Atacama using an ANN-based model
URIhttp://hdl.handle.net/10261/155064
DOI10.1002/2014JG002837
Identificadoresdoi: 10.1002/2014JG002837
issn: 2169-8961
Aparece en las colecciones: (MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.