Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/15496
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Water and nutrient fluxes off Northwest Africa

AuthorsPastor, Maria V. CSIC ORCID; Pelegrí, Josep Lluís CSIC ORCID ; Hernández Guerra, Alonso; Font, Jordi CSIC ORCID CVN; Salat, Jordi CSIC ORCID ; Emelianov, Mikhail CSIC ORCID
KeywordsCoastal upwelling
Central waters
Frontal features
Double diffusion
Transport processes
Interleaving
Cape Verde
Geographic bounding coordinates (17-26°N) (22-14°W)
17-26°N 22-14°W
Issue Date31-Jan-2008
PublisherElsevier
CitationContinental Shelf Research 28(7): 915-936 (2008)
AbstractA historical data set is used to describe the coastal transition zone off Northwest Africa during spring 1973 and fall 1975, from 17° to 26°N, with special emphasis on the interaction between subtropical (North Atlantic Central Waters) and tropical (South Atlantic Central Waters) gyres. The near-surface geostrophic circulation, relative to 300 m, is quite complex. Major features are a large cyclonic pattern north of Cape Blanc (21°N) and offshore flow at the Cape Verde front. The large cyclone occurs in the region of most intense winds, and resembles a large meander of the baroclinic southward upwelling jet. The Cape Verde frontal system displays substantial interleaving that may partly originate as mesoscale features at the coastal upwelling front. Property–property diagrams show that the front is an effective barrier to all properties except temperature. The analysis of the Turner angle suggests that the frontal system is characterized by large heat horizontal diffusion as a result of intense double diffusion, which results in the smoothing of the temperature horizontal gradients. Nine cross-shore sections are used to calculate along-shore geostrophic water-mass and nutrient transports and to infer exchanges between the coastal transition zone and the deep ocean (import: deep ocean to transition zone; export: transition zone to deep ocean). These exchanges compare well with mean wind-induced transports and actual geostrophic cross-shore transport estimates. The region is divided into three areas: southern (18–21°N), central (21–23.5°N), and northern (23.5–26°N). In the northern area geostrophic import is roughly compensated with wind-induced export during both seasons. In the central area geostrophic import is greater than wind-induced export during spring, resulting in net import of both water (0.8 Sv) and nitrate (14 kmol s−1), but during fall both factors again roughly cancel. In the southern area geostrophy and wind join to export water and nutrients during both seasons, they increase from 0.6 Sv and 3 kmol s−1 during fall to 2.9 Sv and 53 kmol s−1 during spring
Description22 pages, 18 figures, 4 tables
Publisher version (URL)https://doi.org/10.1016/j.csr.2008.01.011
URIhttp://hdl.handle.net/10261/15496
DOI10.1016/j.csr.2008.01.011
ISSN0278-4343
Appears in Collections:(ICM) Artículos

Show full item record
Review this work

SCOPUSTM   
Citations

61
checked on May 19, 2022

WEB OF SCIENCETM
Citations

51
checked on May 21, 2022

Page view(s)

317
checked on May 27, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.