English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/154830
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Probing localized strain in solution-derived YBa2Cu3O7−δ nanocomposite thin films

AuthorsGuzmán, Roger ; Gázquez, Jaume ; Mundet, Bernat ; Coll, Mariona ; Obradors, Xavier ; Puig Molina, Teresa
KeywordsStructural properties
Impurities in superconductors
Superconductivity
High-temperature superconductors
Thin films
Scanning transmission electron microscopy
Issue Date12-Jul-2017
PublisherAmerican Physical Society
CitationPhysical Review Materials 1(2): 024801 (2017)
AbstractEnhanced pinning due to nanoscale strain is unique to the high-Tc cuprates, where pairing may be modified with lattice distortion. Therefore a comprehensive understanding of the defect landscape is required for a broad range of applications. However, determining the type and distribution of defects and their associated strain constitutes a critical task, and for this aim, real-space techniques for atomic resolution characterization are necessary. Here, we use scanning transmission electron microscopy (STEM) to study the atomic structure of individual defects of solution-derived YBa2Cu3O7 (YBCO) nanocomposites, where the inclusion of incoherent secondary phase nanoparticles within the YBCO matrix dramatically increases the density of Y1Ba2Cu4O8 (Y124) intergrowths, the commonest defect in YBCO thin films. The formation of the Y124 is found to trigger a concatenation of strain-derived interactions with other defects and the concomitant nucleation of intrinsic defects, which weave a web of randomly distributed nanostrained regions that profoundly transform the vortex-pinning landscape of the YBCO nanocomposite thin films.
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevMaterials.1.024801
URIhttp://hdl.handle.net/10261/154830
DOI10.1103/PhysRevMaterials.1.024801
E-ISSN2475-9953
Appears in Collections:(ICMAB) Artículos
Files in This Item:
File Description SizeFormat 
Guzman_PhysRevMat_2017_editorial.pdfArtículo principal3,28 MBAdobe PDFThumbnail
View/Open
Guzman_PhysRevMat_2017_suppl_editorial.pdfInformación complementaria20,65 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.