English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/154748
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development

AutorSevilla Solís, Marta ; Álvarez Ferrero, Guillermo ; Fuertes Arias, Antonio Benito
Fecha de publicación1-ago-2017
EditorAmerican Chemical Society
CitaciónChemistry of Materials 29(16): 6900–6907 (2017)
ResumenA sustainable one-pot scheme for the synthesis of hierarchical porous carbons formed from biomass is developed herein. It is based on the carbonization of biomass-derived products (glucose, glucosamine, soya flour, and microalgae) in the presence of an activating agent (potassium oxalate) and calcium carbonate nanoparticles that form a hard template. During carbonization, double carbonates are formed in situ, which results in modifications in the morphology and size of the template nanoparticles, giving rise to a carbon material with an open macroporous foam-like structure rich in micro-/mesopores, the latter developing via a redox reaction between the carbon and potassium carbonate and also as a result of the reaction between the carbon and the evolved CO2. The porosity can be tailored by selecting an appropriate precursor. Thus, the carbon materials are basically micro-/macroporous in the case of glucose and glucosamine, and micro-/meso-/macroporous when soya flour and microalgae are used. A direct relationship is observed between the amount of nitrogen present in the precursor and mesopore development. Hence, the addition of urea to the mixture of glucose and potassium oxalate and CaCO3 nanoparticles also yields micro-/meso-/macroporous carbons. The materials synthesized at 800 °C have large surface areas in the ∼1800–3100 m2/g range. At 750 °C, the materials synthesized from N-rich biomass combine ultralarge surface areas of 2400–3050 m2/g and a remarkable N-doping (2–3 wt % N). This combination of textural and chemical properties is highly appealing for many energy-related applications and also for adsorption-based processes.
DescripciónThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials copyright ©American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.chemmater.7b02218
Versión del editorhttp://dx.doi.org/10.1021/acs.chemmater.7b02218
Aparece en las colecciones: (INCAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
One-pot_synthesis_Sevilla.pdf610,86 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.