English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/154434
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Automated identification of reference genes based on RNA-seq data

AuthorsCarmona, Rosario; Arroyo, Macarena; Jiménez-Quesada, María José; Seoane, Pedro; Zafra, Adoración; Larrosa, Rafael; Alché Ramírez, Juan de Dios; Claros, Gonzalo
KeywordsReference genes
Real-time PCR
Quantitative PCR
Olive (Olea europaea L.)
Issue Date18-Aug-2017
PublisherBioMed Central
CitationBioMedical Engineering OnLine 16(Suppl 1): 65 (2017)
Abstract[Background] Gene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments. Ideally, RG expression levels should remain constant in all cells, tissues or experimental conditions under study. Housekeeping genes traditionally fulfilled this requirement, but they have been reported to be less invariant than expected; therefore, RGs should be tested and validated for every particular situation. Microarray data have been used to propose new RGs, but only a limited set of model species and conditions are available; on the contrary, RNA-seq experiments are more and more frequent and constitute a new source of candidate RGs.
[Results] An automated workflow based on mapped NGS reads has been constructed to obtain highly and invariantly expressed RGs based on a normalized expression in reads per mapped million and the coefficient of variation. This workflow has been tested with Roche/454 reads from reproductive tissues of olive tree (Olea europaea L.), as well as with Illumina paired-end reads from two different accessions of Arabidopsis thaliana and three different human cancers (prostate, small-cell cancer lung and lung adenocarcinoma). Candidate RGs have been proposed for each species and many of them have been previously reported as RGs in literature. Experimental validation of significant RGs in olive tree is provided to support the algorithm.
[Conclusion] Regardless sequencing technology, number of replicates, and library sizes, when RNA-seq experiments are designed and performed, the same datasets can be analyzed with our workflow to extract suitable RGs for subsequent PCR validation. Moreover, different subset of experimental conditions can provide different suitable RGs.
Publisher version (URL)http://dx.doi.org/10.1186/s12938-017-0356-5
Appears in Collections:(EEZ) Artículos
Files in This Item:
File Description SizeFormat 
Automated_identification_reference-Carmona.pdf1,93 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.