English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15442

The piecewise constant symmetric potential vorticity vortex in geophysical flows

AutorViúdez, Álvaro
Fecha de publicación16-oct-2008
EditorCambridge University Press
CitaciónJournal of Fluid Mechanics 614: 145-172 (2008)
ResumenThe concept of piecewise constant symmetric vortex in the context of three-dimensional baroclinic balanced geophysical flows is explored. The pressure gradients generated by horizontal cylinders and spherical balls of uniform potential vorticity (PV), or uniform material invariants, are obtained either analytically or numerically, in the general case of Boussinesq and f-plane dynamics as well as under the quasi-geostrophic and semigeostrophic dynamical approximations. Based on the order of magnitude of the different terms in the PV inversion equation, approximated PV equations are deduced. In some of these cases, radial solutions are possible and the interior and exterior solutions are found analytically. In the case of non-radial dependence, exterior solutions can be found numerically. Linear, and upper and lower bound approximations to the full PV inversion equations, and their respective solutions, are also included. However, the general solution for the pressure gradient in the vortex exterior does not have spherical symmetry and remains as an important theoretical challenge. It is suggested that, in order to maintain everywhere the inertial and static stability of the balanced geophysical flows, small balls of finite radius, rather than PV singularities, could become, specially in numerical applications, useful mathematical objects.
Descripción28 pages, 12 figures.-- Full-text version available Open Access at: http://www.icm.csic.es/files/oce/almacen/papers/AR-2008-24.pdf
Versión del editorhttp://dx.doi.org/10.1017/S0022112008003364
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.