English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/154156
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

New uses of LFPs: Pathway-specific threads obtained through spatial discrimination

AutorHerreras, Óscar ; Makarova, Julia ; Makarov, V. A.
Palabras claveIndependent component analysis Local field potentials Network oscillations Neural source localization Population activity Spontaneous activity
Fecha de publicación2015
CitaciónNeuroscience 310: 486- 503 (2015)
Resumen© 2015 IBRO. Local field potentials (LFPs) reflect the coordinated firing of functional neural assemblies during information coding and transfer across neural networks. As such, it was proposed that the extraordinary variety of cytoarchitectonic elements in the brain is responsible for the wide range of amplitudes and for the coverage of field potentials, which in most cases receive contributions from multiple pathways and populations. The influence of spatial factors overrides the bold interpretations of customary measurements, such as the amplitude and polarity, to the point that their cellular interpretation is one of the hardest tasks in Neurophysiology. Temporal patterns and frequency bands are not exclusive to pathways but rather, the spatial configuration of the voltage gradients created by each pathway is highly specific and may be used advantageously. Recent technical and analytical advances now make it possible to separate and then reconstruct activity for specific pathways. In this review, we discuss how spatial features specific to cells and populations define the amplitude and extension of LFPs, why they become virtually indecipherable when several pathways are co-activated, and then we present the recent advances regarding their disentanglement using spatial discrimination techniques. The pathway-specific threads of LFPs have a simple cellular interpretation, and the temporal fluctuations obtained can be applied to a variety of new experimental objectives and improve existing approaches. Among others, they facilitate the parallel readout of activity in several populations over multiple time scales correlating them with behavior. Also, they access information contained in irregular fluctuations, facilitating the testing of ongoing plasticity. In addition, they open the way to unravel the synaptic nature of rhythmic oscillations, as well as the dynamic relationships between multiple oscillatory activities. The challenge of understanding which waves belong to which populations, and the pathways that provoke them, may soon be overcome.
URIhttp://hdl.handle.net/10261/154156
DOI10.1016/j.neuroscience.2015.09.054
Identificadoresdoi: 10.1016/j.neuroscience.2015.09.054
issn: 1873-7544
Aparece en las colecciones: (IC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.