English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15393
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Exact Solution of the Spin-Isospin Proton-Neutron Pairing Hamiltonian

AutorLerma H., Sergio ; Errea, Beatriz ; Dukelsky, Jorge ; Satula, W.
Palabras clave[PACS] Models based on group theory
[PACS] Integrable systems
[PACS] Pairing symmetries (other than s-wave)
Fecha de publicación17-jul-2007
EditorAmerican Physical Society
CitaciónPhysical Review Letters 99(3): 032501 (2007)
ResumenThe exact solution of the proton-neutron isoscalar-isovector (T=0,1) pairing Hamiltonian with nondegenerate single-particle orbits and equal pairing strengths is presented for the first time. The Hamiltonian is a particular case of a family of integrable SO(8) Richardson-Gaudin models. The exact solution of the T=0,1 pairing Hamiltonian is reduced to a problem of 4 sets of coupled nonlinear equations that determine the spectral parameters of the complete set of eigenstates. The microscopic structure of individual eigenstates is analyzed in terms of evolution of the spectral parameters in the complex plane for a system of A=80 nucleons. The spectroscopic trends of the exact solutions are discussed in terms of generalized rotations in isospace.
Descripción4 pages, 2 figures.-- PACS nrs.: 21.60.Fw; 02.30.Ik; 74.20.Rp.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevLett.99.032501
URIhttp://hdl.handle.net/10261/15393
DOI10.1103/PhysRevLett.99.032501
ISSN0031-9007 (Print)
1079-7114 (Online)
1092-0145 (CD-ROM)
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
exact solution.pdf341,23 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.