English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/153591
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Cost-Effectiveness of Seven Approaches to Map Vegetation Communities — A Case Study from Northern Australia’s Tropical Savannas

AutorLewis, Donna; Phinn, Stuart; Arroyo, Lara
Fecha de publicación18-ene-2013
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 5 (1): 377-414 (2013)
ResumenVegetation communities are traditionally mapped from aerial photography interpretation. Other semi-automated methods include pixel- and object-based image analysis. While these methods have been used for decades, there is a lack of comparative research. We evaluated the cost-effectiveness of seven approaches to map vegetation communities in a northern Australia’s tropical savanna environment. The seven approaches included: (1). aerial photography interpretation, (2). pixel-based image-only classification (Maximum Likelihood Classifier), (3). pixel-based integrated classification (Maximum Likelihood Classifier), (4). object-based image-only classification (nearest neighbor classifier), (5). object-based integrated classification (nearest neighbor classifier), (6). object-based image-only classification (step-wise ruleset), and (7). object-based integrated classification (step-wise ruleset). Approach 1 was applied to 1:50,000 aerial photography and approaches 2–7 were applied to SPOT5 and Landsat5 TM multispectral data. The integrated approaches (3, 5 and 7) included ancillary data (a digital elevation model, slope model, normalized difference vegetation index and hydrology information). The cost-effectiveness was assessed taking into consideration the accuracy and costs associated with each classification approach and image dataset. Accuracy was assessed in terms of overall accuracy and the costs were evaluated using four main components: field data acquisition and preparation, image data acquisition and preparation, image classification and accuracy assessment. Overall accuracy ranged from 28%, for the image-only pixel-based approach, to 67% for the aerial photography interpretation, while total costs ranged from AU$338,000 to AU$388,180 (Australian dollars), for the pixel-based image-only classification and aerial photography interpretation respectively. The most labor-intensive component was field data acquisition and preparation, followed by image data acquisition and preparation, classification and accuracy assessment.
Versión del editorhttps://doi.org/10.3390/rs5010377
URIhttp://hdl.handle.net/10261/153591
DOI10.3390/rs5010377
Identificadoresdoi: 10.3390/rs5010377
Aparece en las colecciones: (CCHS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
remotesensing-05-00377.pdf8,86 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.