English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/153574
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Automated Diatom Classification (Part A): Handcrafted Feature Approaches

AutorBueno, Gloria; Déniz, Óscar; Pedraza, Aníbal; Ruiz-Santaquiteria, Jesús; Salido, Jesús; Cristóbal, Gabriel ; Borrego-Ramos, María; Blanco, Saúl
Fecha de publicación25-jul-2017
EditorMultidisciplinary Digital Publishing Institute
CitaciónApplied Sciences 7 (8): 753 (2017)
ResumenThis paper deals with automatic taxa identification based on machine learning methods. The aim is therefore to automatically classify diatoms, in terms of pattern recognition terminology. Diatoms are a kind of algae microorganism with high biodiversity at the species level, which are useful for water quality assessment. The most relevant features for diatom description and classification have been selected using an extensive dataset of 80 taxa with a minimum of 100 samples/taxon augmented to 300 samples/taxon. In addition to published morphological, statistical and textural descriptors, a new textural descriptor, Local Binary Patterns (LBP), to characterize the diatom’s valves, and a log Gabor implementation not tested before for this purpose are introduced in this paper. Results show an overall accuracy of 98.11% using bagging decision trees and combinations of descriptors. Finally, some phycological features of diatoms that are still difficult to integrate in computer systems are discussed for future work.
Versión del editorhttp://doi.org/10.3390/app7080753
URIhttp://hdl.handle.net/10261/153574
DOI10.3390/app7080753
Identificadoresdoi: 10.3390/app7080753
Aparece en las colecciones: (CFMAC-IO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
applsci-07-00753.pdf18,78 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.