English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/153395
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

Factors affecting interactome-based prediction of human genes associated with clinical signs

AuthorsGonzález-Pérez, Sara; Pazos, Florencio; Chagoyen, Mónica
KeywordsGene prioritization
Human interactome
Clinical signs
Network-based methods
Issue Date17-Jul-2017
PublisherBioMed Central
CitationBMC Bioinformatics 18(1): 340 (2017)
Abstract[Background] Clinical signs are a fundamental aspect of human pathologies. While disease diagnosis is problematic or impossible in many cases, signs are easier to perceive and categorize. Clinical signs are increasingly used, together with molecular networks, to prioritize detected variants in clinical genomics pipelines, even if the patient is still undiagnosed. Here we analyze the ability of these network-based methods to predict genes that underlie clinical signs from the human interactome.
[Results] Our analysis reveals that these approaches can locate genes associated with clinical signs with variable performance that depends on the sign and associated disease. We analyzed several clinical and biological factors that explain these variable results, including number of genes involved (mono- vs. oligogenic diseases), mode of inheritance, type of clinical sign and gene product function.
[Conclusions] Our results indicate that the characteristics of the clinical signs and their related diseases should be considered for interpreting the results of network-prediction methods, such as those aimed at discovering disease-related genes and variants. These results are important due the increasing use of clinical signs as an alternative to diseases for studying the molecular basis of human pathologies.
Publisher version (URL)http://dx.doi.org/10.1186/s12859-017-1754-1
URIhttp://hdl.handle.net/10261/153395
DOIhttp://dx.doi.org/10.1186/s12859-017-1754-1
ISSN1471-2105
Appears in Collections:(CNB) Artículos
Files in This Item:
File Description SizeFormat 
12859_2017_Article_1754.pdf1,26 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.