English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15303
Título

Patterns arising from the interaction between scalar and vectorial instabilities in two-photon resonant Kerr cavities

AutorHoyuelos, Miguel; Walgraef, Daniel; Colet, Pere ; San Miguel, Maxi
Palabras clave[PACS] Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics
[PACS] Pattern selection; pattern formation
[PACS] Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift
Fecha de publicación11-abr-2002
EditorAmerican Physical Society
CitaciónPhysical Review E 65(4): 046620 (2002)
ResumenWe study pattern formation associated with the polarization degree of freedom of the electric field amplitude in a mean field model describing a nonlinear Kerr medium close to a two-photon resonance, placed inside a ring cavity with flat mirrors and driven by a coherent x-polarized plane-wave field. In the self-focusing case, for negative detunings the pattern arises naturally from a codimension two bifurcation. For a critical value of the field intensity there are two wave numbers that become unstable simultaneously, corresponding to two Turing-like instabilities. Considered alone, one of the instabilities would originate a linearly polarized hexagonal pattern whereas the other instability is of pure vectorial origin and would give rise to an elliptically polarized stripe pattern. We show that the competition between the two wavenumbers can originate different structures, being the detuning a natural selection parameter.
Descripción9 pages, 6 figures.-- PACS nrs.: 42.65.Sf, 47.54.+r, 42.50.Hz.-- ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/9901310
Versión del editorhttp://dx.doi.org/10.1103/PhysRevE.65.046620
URIhttp://hdl.handle.net/10261/15303
DOI10.1103/PhysRevE.65.046620
ISSN1539-3755
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
e046620.pdf563,57 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.