English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/152586
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


On the mesoscale monitoring capability of Argo floats in the Mediterranean Sea

AuthorsSánchez-Román, Antonio; Ruiz, Simón ; Pascual, Ananda ; Mourre, Baptiste ; Guinehut, Stephanie
Issue Date6-Oct-2016
PublisherEuropean Geosciences Union
CitationOcean Science 13(2): 223-234 (2016)
AbstractIn this work a simplified observing system simulation experiment (OSSE) approach is used to investigate which Argo design sampling in the Mediterranean Sea would be necessary to properly capture the mesoscale dynamics in this basin. The monitoring of the mesoscale features is not an initial objective of the Argo network. However, it is an interesting question from the perspective of future network extensions in order to improve the ocean state estimates. The true field used to conduct the OSSEs is provided by a specific altimetry-gridded merged product for the Mediterranean Sea. Synthetic observations were obtained by sub-sampling this “Nature Run” according to different configurations of the ARGO network. The observation errors required to perform the OSSEs were obtained through the comparison of sea level anomalies (SLAs) from altimetry and dynamic height anomalies (DHAs) computed from the real in situ Argo network. This analysis also contributes to validate satellite SLAs with an increased confidence. The simulation experiments show that a configuration similar to the current Argo array in the Mediterranean (with a spatial resolution of 2 2) is only able to recover the large-scale signals of the basin. Increasing the spatial resolution to nearly 75 km75 km, allows the capture of most of the mesoscale signal in the basin and to retrieve the SLA field with a RMSE of 3 cm for spatial scales larger than 150 km, similar to those presently captured by the altimetry. This would represent a theoretical reduction of 40% of the actual RMSE. Such a high-resolution Argo array composed of around 450 floats, cycling every 10 days, is expected to increase the actual network cost by approximately a factor of 6.
Publisher version (URL)https://doi.org/10.5194/os-2016-77
Identifiersdoi: 10.5194/os-2016-77
issn: 1812-0822
Appears in Collections:(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
On_the_mesoscale-Sanchez-Roman.pdf2,92 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.