English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/152526
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Where does the physics of extreme gravitational collapse reside?

AutorBarceló, Carlos ; Carballo Rubio, Raúl ; Garay, Luis Javier
Palabras claveWhite holes
Quantum gravity
Massive stars
Hawking evaporation
Gravitational collapse
Black holes
Fecha de publicación13-may-2016
EditorMultidisciplinary Digital Publishing Institute
CitaciónUniverse 2: 1-30 (2016)
ResumenThe gravitational collapse of massive stars serves to manifest the most severe deviations of general relativity with respect to Newtonian gravity: the formation of horizons and spacetime singularities. Both features have proven to be catalysts of deep physical developments, especially when combined with the principles of quantum mechanics. Nonetheless, it is seldom remarked that it is hardly possible to combine all these developments into a unified theoretical model, while maintaining reasonable prospects for the independent experimental corroboration of its different parts. In this paper we review the current theoretical understanding of the physics of gravitational collapse in order to highlight this tension, stating the position that the standard view on evaporating black holes stands for. This serves as the motivation for the discussion of a recent proposal that offers the opposite perspective, represented by a set of geometries that regularize the classical singular behavior and present modifications of the near-horizon Schwarzschild geometry as the result of the propagation of non-perturbative ultraviolet effects originated in regions of high curvature. We present an extensive exploration of the necessary steps on the explicit construction of these geometries, and discuss how this proposal could change our present understanding of astrophysical black holes and even offer the possibility of detecting genuine ultraviolet effects in gravitational-wave experiments.
Descripción30 pags., 1 fig. ; Open Access funded by Creative Commons Atribution Licence 4.0
Versión del editorhttp://doi.org/10.3390/universe2020007
URIhttp://hdl.handle.net/10261/152526
DOI10.3390/universe2020007
Identificadoresdoi: 10.3390/universe2020007
issn: 2218-1997
Aparece en las colecciones: (CFMAC-IEM) Artículos
(IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Where.pdf837,07 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.