English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151929
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

BATMAN: Bayesian Technique for Multi-image Analysis

AutorCasado, J.; Ascasibar, Y.; García-Benito, Rubén ; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, Sebastián F. ; Diaz, A. I.
Palabras claveMethods: data analysis
Methods: numerical
Methods: statistical
Techniques: image processing
Fecha de publicación28-dic-2016
EditorOxford University Press
CitaciónMonthly Notices of the Royal Astronomical Society 466(4): 3989-4008 ( (2017)
ResumenThis paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithmmay be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BATMAN is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.
Versión del editorhttp://dx.doi.org/10.1093/mnras/stw3362
URIhttp://hdl.handle.net/10261/151929
DOI10.1093/mnras/stw3362
ISSN0035-8711
E-ISSN1365-2966
Aparece en las colecciones: (IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IAA_2017_MNRASstw3362.pdf8,82 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.