English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151804
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Hybridizing feature selection and feature learning approaches in QSAR modeling for drug discovery

AutorPonzoni, Ignacio; Sebastián, Víctor; Requena-Triguero, Carlos; Roca, Carlos; Páez, Juan A. ; Campillo, Nuria E.
Fecha de publicación25-may-2017
EditorNature Publishing Group
CitaciónScientific Reports 7: 2403 (2017)
ResumenQuantitative structure–activity relationship modeling using machine learning techniques constitutes a complex computational problem, where the identification of the most informative molecular descriptors for predicting a specific target property plays a critical role. Two main general approaches can be used for this modeling procedure: feature selection and feature learning. In this paper, a performance comparative study of two state-of-art methods related to these two approaches is carried out. In particular, regression and classification models for three different issues are inferred using both methods under different experimental scenarios: two drug-like properties, such as blood-brainbarrier and human intestinal absorption, and enantiomeric excess, as a measurement of purity used for chiral substances. Beyond the contrastive analysis of feature selection and feature learning methods as competitive approaches, the hybridization of these strategies is also evaluated based on previous results obtained in material sciences. From the experimental results, it can be concluded that there is not a clear winner between both approaches because the performance depends on the characteristics of the compound databases used for modeling. Nevertheless, in several cases, it was observed that the accuracy of the models can be improved by combining both approaches when the molecular descriptor sets provided by feature selection and feature learning contain complementary information.
Descripción19 p.-12 fig.-5 tab. Ponzoni, Ignacio et al.
Versión del editorhttp://dx.doi.org/10.1038/s41598-017-02114-3
Aparece en las colecciones: (CIB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Sc. Rep.2017.pdfArtículo principal4,46 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.