English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151773
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Hierarchical boosting: a machine-learning framework to detect and classify hard selective sweeps in human populations

AutorPybus, Marc ; Luisi, Pierre ; Dall'Olio, Giovanni Marco; Uzkudun, Manu; Laayouni, Hafid ; Bertranpetit, Jaume ; Engelken, Johannes
Fecha de publicación15-dic-2015
EditorOxford University Press
CitaciónBioinformatics 31(24): 3946-3952 (2015)
Resumen[Motivation] Detecting positive selection in genomic regions is a recurrent topic in natural population genetic studies. However, there is little consistency among the regions detected in several genome-wide scans using different tests and/or populations. Furthermore, few methods address the challenge of classifying selective events according to specific features such as age, intensity or state (completeness).
[Results] We have developed a machine-learning classification framework that exploits the combined ability of some selection tests to uncover different polymorphism features expected under the hard sweep model, while controlling for population-specific demography. As a result, we achieve high sensitivity toward hard selective sweeps while adding insights about their completeness (whether a selected variant is fixed or not) and age of onset. Our method also determines the relevance of the individual methods implemented so far to detect positive selection under specific selective scenarios. We calibrated and applied the method to three reference human populations from The 1000 Genome Project to generate a genome-wide classification map of hard selective sweeps. This study improves detection of selective sweep by overcoming the classical selection versus no-selection classification strategy, and offers an explanation to the lack of consistency observed among selection tests when applied to real data. Very few signals were observed in the African population studied, while our method presents higher sensitivity in this population demography.
Versión del editorhttps://doi.org/10.1093/bioinformatics/btv493
URIhttp://hdl.handle.net/10261/151773
DOI10.1093/bioinformatics/btv493
ISSN1367-4803
E-ISSN1460-2059
Aparece en las colecciones: (IBE) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.