English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151490
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Interstellar ice analogs: H2O ice mixtures with CH3OH and NH3 in the far-IR region

AutorGiuliano, B.M.; Martín-Doménech, R.; Escribano, Rafael ; Manzano-Santamaría, J.; Muñoz Caro, G. M.
Palabras claveISM: molecules
Infrared: ISM
Techniques: spectroscopic
Methods: laboratory: molecular
Fecha de publicación2-ago-2016
EditorEDP Sciences
CitaciónAstronomy and Astrophysics 592 (2016)
ResumenContext. New spectroscopic observations in the far-infrared (IR) range are expected from future planned missions. Although water ice is the only species detected so far in interstellar ices in this range, the presence of ice mixtures requires laboratory characterization of the corresponding spectra. Aims. We present an investigation on far-IR spectra of binary ice mixtures relevant in various astrophysical environments. The foremost goal is to compare the spectroscopic features of the ice mixtures to those of pure ices, and to search for changes in peak frequencies, intensities, and band strengths of the main bands. Methods. Mixtures HO:CHOH and HO:NH of different ratios have been deposited on a diamond substrate at astrophysically relevant conditions. We measured the spectra in the near- and mid-IR regions to derive ice column densities that were subsequently used to calculate the apparent band strengths in the far-IR region. We also designed theoretical models to study these mixtures and to predict their spectra. Results. We recorded spectra of amorphous phases for HO:CHOH mixtures of different compositions, that is 1:1, 3:1, and 10:1 at 8 K, and compared these mixtures to those obtained after warming. This process involves the appearance of new spectral features and changes in band shapes and band strengths. We also compared the spectra to those of the pure species and to theoretical predictions. We measured apparent band strengths for all the observed features. For HO:NH mixtures, the ratios selected were 3:1, 1:1, and 1:3. In this case the spectral variations are even more marked than for the water:methanol samples. Conclusions. Band strengths in the far-IR are missing in astrophysics literature for ice mixtures. The results presented here are valuable for detecting the presence and composition of such mixtures from future space observations in this spectral region. © ESO, 2016
Descripción11 págs.; 11 figs.; 3 tabs.; 1 app.
Versión del editorhttps://doi.org/10.1051/0004-6361/201628324
Identificadoresdoi: 10.1051/0004-6361/201628324
issn: 1432-0746
Aparece en las colecciones: (CFMAC-IEM) Artículos
(CAB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Interstellar ice.pdf335,09 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.