English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151413
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Hamiltonian description of the parametrized scalar field in bounded spatial regions

AutorBarbero González, Jesús Fernando ; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
Palabras claveBounded domains
Parametrized field theories
Hamiltonian formulation
Fecha de publicación19-abr-2016
EditorInstitute of Physics Publishing
CitaciónClassical and Quantum Gravity 33: 105002 (2016)
ResumenWe study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it. © 2016 IOP Publishing
Descripción19 págs.; 1 app.
Versión del editorhttps://doi.org/10.1088/0264-9381/33/10/105002
URIhttp://hdl.handle.net/10261/151413
DOI10.1088/0264-9381/33/10/105002
Identificadoresdoi: 10.1088/0264-9381/33/10/105002
issn: 1361-6382
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Hamiltonian.pdf240,86 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.