English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151285
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Hyperspectral Sensors as a Management Tool to Prevent the Invasion of the Exotic Cordgrass Spartina densiflora in the Doñana Wetlands

AutorBustamante, Javier ; Aragonés, David ; Afán, Isabel ; Pérez-Vázque, Andrés; Castellanos, Eloy M.; Díaz-Delgado, Ricardo
Palabras claveInvasive species
Doñana
Matched filtering
MF
Constrained energy minimization
CEM
Target-constrained interference-minimized filter
TCIMF
Spectral angle mapper
SAM
Orthogonal subspace projection
OSP
Adaptive coherence estimator;
ACE
CASI
AHS
Hyperspectral imagery
Remote sensing
Spartina densiflora
Fecha de publicación2016
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing, 8, 1001 (2016)
ResumenWe test the use of hyperspectral sensors for the early detection of the invasive dense- flowered cordgrass (Spartina densiflora Brongn.) in the Guadalquivir River marshes, Southwestern Spain. We flew in tandem a CASI-1500 (368–1052 nm) and an AHS (430–13,000 nm) airborne sensors in an area with presence of S. densiflora. We simplified the processing of hyperspectral data (no atmospheric correction and no data-reduction techniques) to test if these treatments were necessary for accurate S. densiflora detection in the area. We tested several statistical signal detection algorithms implemented in ENVI software as spectral target detection techniques (matched filtering, constrained energy minimization, orthogonal subspace projection, target-constrained interference minimized filter, and adaptive coherence estimator) and compared them to the well-known spectral angle mapper, using spectra extracted from ground-truth locations in the images. The target S. densiflora was easy to detect in the marshes by all algorithms in images of both sensors. The best methods (adaptive coherence estimator and target-constrained interference minimized filter) on the best sensor (AHS) produced 100% discrimination (Kappa = 1, AUC = 1) at the study site and only some decline in performance when extrapolated to a new nearby area. AHS outperformed CASI in spite of having a coarser spatial resolution (4-m vs. 1-m) and lower spectral resolution in the visible and near-infrared range, but had a better signal to noise ratio. The larger spectral range of AHS in the short-wave and thermal infrared was of no particular advantage. Our conclusions are that it is possible to use hyperspectral sensors to map the early spread S. densiflora in the Guadalquivir River marshes. AHS is the most suitable airborne hyperspectral sensor for this task and the signal processing techniques target-constrained interference minimized filter (TCIMF) and adaptive coherence estimator (ACE) are the best performing target detection techniques that can be employed operationally with a simplified processing of hyperspectral images.
Versión del editorhtpp://dx.doi.org/10.3390/rs8121001
URIhttp://hdl.handle.net/10261/151285
DOI10.3390/rs8121001
Aparece en las colecciones: (EBD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
remotesensing-08-01001.pdf9,59 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.