Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/151000
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorKiefer, Davides_ES
dc.contributor.authorLiyang, Yues_ES
dc.contributor.authorFransson, Erikes_ES
dc.contributor.authorGómez Rodríguez, Andréses_ES
dc.contributor.authorPrimetzhofer, Danieles_ES
dc.contributor.authorAmassian, Arames_ES
dc.contributor.authorCampoy Quiles, Marianoes_ES
dc.contributor.authorMüller, Christianes_ES
dc.date.accessioned2017-06-07T09:02:27Z-
dc.date.available2017-06-07T09:02:27Z-
dc.date.issued2017-01-
dc.identifier.citationAdvanced Science 4(1): 1600203 (2017)es_ES
dc.identifier.issn2198-3844-
dc.identifier.urihttp://hdl.handle.net/10261/151000-
dc.description.abstractPoly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.es_ES
dc.description.sponsorshipFinancial support from the Swedish Research Council Formas, the Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellowship, the Foundation of Strategic Research (SSF) through a research infrastructure fellowship and the European Research Council (ERC) under grant agreements no. 637624 and 648901 is gratefully acknowledged. The authors thank Jason Ryan and Anders Mårtensson (Chalmers) for help with thermal conductivity and SEC measurements, Dr. Duc T. Duong (Stanford University) for advice on doping efficiency calculations and CHESS (supported by the NSF & NIH/NIGMS via NSF award DMR-1332208) for providing experimental time for GIWAXS measurements. M.C.Q. and A.G. acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496) and project CSD2010–00044 (Consolider NANOTHERM).es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCHes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SEV-2015-0496es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/637624-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/648901-
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.subjectConjugated polymerses_ES
dc.subjectInsulatorses_ES
dc.subjectMolecular dopantses_ES
dc.subjectOrganic thermoelectricses_ES
dc.subjectSemiconductorses_ES
dc.subjectTernary blendes_ES
dc.titleA Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectricses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1002/advs.201600203-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1002/advs.201600203es_ES
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderSwedish Research Counciles_ES
dc.contributor.funderKnut and Alice Wallenberg Foundationes_ES
dc.contributor.funderSwedish Foundation for Strategic Researches_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.contributor.funderNational Science Foundation (US)es_ES
dc.contributor.funderNational Institutes of Health (US)es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004063es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000002es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.pmid28105396-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (ICMAB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Kiefer_AdvSci_2017_editorial.pdf1,95 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

10
checked on 14-abr-2024

SCOPUSTM   
Citations

70
checked on 13-abr-2024

WEB OF SCIENCETM
Citations

67
checked on 28-feb-2024

Page view(s)

357
checked on 19-abr-2024

Download(s)

269
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons