English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/150851
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Dopaminergic regulation of olfactory type G-protein α subunit expression in the striatum

AuthorsRuiz-DeDiego, I.; Naranjo, José Ramón; Hervé, D.; Moratalla, Rosario CSIC ORCID
dopaminergic receptors
Parkinson's disease
Issue Date2015
PublisherJohn Wiley & Sons
CitationMovement Disorders 30: 1039- 1049 (2015)
AbstractBackground: In rodents, the olfactory type G-protein α subunit (Gαolf) couples the dopamine D1 receptor (D1R) to adenylyl cyclase, triggering intracellular signaling and neuronal activation. In the striatum, Gαolf is enriched in the striosomes. Changes in Gαolf protein levels have been observed after dopamine depletion. However, the regulation of Gαolf expression by dopamine and dopamine receptors is not fully understood. Methods: To address this, Striatal Gαolf expression pattern was studied in wild-type and genetically engineered mice lacking D1R, D2R (D2 receptor), and downstream regulatory element antagonist modulator (DREAM) protein whose dopamine levels were manipulated. Dopamine depletion was accomplished by 6-hydroxydopamine (6-OHDA) or by Pitx3 ablation, and dopamine replacement by chronic levodopa (l-dopa). The Gαolf levels were analyzed by immunohistochemistry, Western blot, and real-time quantitative polymerase chain reaction (RT-qPCR). Results: Our results demostrate that Dopamine depletion or inactivation of D1R abolished the striosomal pattern of Gαolf expression and increased Gαolf protein levels. Dopamine replacement in wild-type lesioned mice reestablished both the expression pattern and protein levels, but paradoxically increased Gαolf messenger RNA (mRNA). In D1R mice, dopamine depletion decreased striatal Gαolf expression, whereas l-dopa did not restore either Gαolf levels or its expression pattern. Inactivation of D2R or changes in the cAMP/PKA signaling pathway downstream of Gαolf did not modify its expression. Conclusion: Our results show a homeostatic, negative regulation of Gαolf by dopamine and by D1R stimulation, which are also required for the striosomal Gαolf pattern. These results shed light on the regulation of Gαolf by dopamine signaling that could be involved in the pathophysiology of the maladaptive response to chronic l-dopa treatment in Parkinson's disease. © 2015 International Parkinson and Movement Disorder Society.
Identifiersdoi: 10.1002/mds.26197
issn: 1531-8257
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.