English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/150146
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Sampling Hubbell's neutral theory of biodiversity

AutorAlonso, David ; McKane, A. J.
Fecha de publicación2004
EditorBlackwell Publishing
CitaciónEcology Letters 7 : 901-910 (2004)
ResumenIn the context of neutral theories of community ecology, a novel genealogy-based framework has recently furnished an analytic extension of Ewens’ sampling multivariate abundance distribution, which also applies to a random sample from a local community. Here, instead of taking a multivariate approach, we further develop the sampling theory of Hubbell's neutral spatially implicit theory and derive simple abundance distributions for a random sample both from a local community and a metacommunity. Our result is given in terms of the average number of species with a given abundance in any randomly extracted sample. Contrary to what has been widely assumed, a random sample from a metacommunity is not fully described by the Fisher log-series, but by a new distribution. This new sample distribution matches the log-series expectation at high biodiversity values (θ > 1) but clearly departs from it for species-poor metacommunities (θ < 1). Our theoretical framework should be helpful in the better assessment of diversity and testing of the neutral theory by using abundance data.
DescripciónEste artículo contiene 10 páginas, 1 tabla, 3 figuras
Versión del editorhttp://dx.doi.org/10.1111/j.1461-0248.2004.00640.x
URIhttp://hdl.handle.net/10261/150146
DOI10.1111/j.1461-0248.2004.00640.x
ISSN 1461-023X
E-ISSN1461-0248
Aparece en las colecciones: (CEAB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.