English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/150052
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Global Kalman filter approaches to estimate absolute angles of lower limb segments

AutorNogueira, Samuel L.; Lambrecht, Stefan; Inoue, Roberto S.; Bortole, Magdo; Montagnoli, Arlindo N.; Moreno, Juan C.; Rocón, Eduardo ; Terra, Marco H.; Siqueira, Adriano A. G.; Pons, Jose L.
Palabras claveExoskeleton
Inertial sensors
Kalman filter
Markovian jump systems
Wearable robots
Fecha de publicación16-may-2017
EditorBioMed Central
CitaciónBioMedical Engineering OnLine, 16(1): 58 (2017)
Resumen[Background] In this paper we propose the use of global Kalman filters (KFs) to estimate absolute angles of lower limb segments. Standard approaches adopt KFs to improve the performance of inertial sensors based on individual link configurations. In consequence, for a multi-body system like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link angle estimations (e.g., foot). Global KF approaches, on the other hand, correlate the collective contribution of all signals from lower limb segments observed in the state-space model through the filtering process. We present a novel global KF (matricial global KF) relying only on inertial sensor data, and validate both this KF and a previously presented global KF (Markov Jump Linear Systems, MJLS-based KF), which fuses data from inertial sensors and encoders from an exoskeleton. We furthermore compare both methods to the commonly used local KF.
[Results] The results indicate that the global KFs performed significantly better than the local KF, with an average root mean square error (RMSE) of respectively 0.942° for the MJLS-based KF, 1.167° for the matrical global KF, and 1.202° for the local KFs. Including the data from the exoskeleton encoders also resulted in a significant increase in performance.
[Conclusion] The results indicate that the current practice of using KFs based on local models is suboptimal. Both the presented KF based on inertial sensor data, as well our previously presented global approach fusing inertial sensor data with data from exoskeleton encoders, were superior to local KFs. We therefore recommend to use global KFs for gait analysis and exoskeleton control.
Versión del editorhttp://dx.doi.org/10.1186/s12938-017-0346-7
Aparece en las colecciones: (IC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
12938_2017_Article_346.pdf2,42 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.