English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15001
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations

AutorSarriguren, Pedro ; Gaidarov, M. K.; Moya de Guerra, Elvira ; Antonov, A. N.
Palabras clave[PACS] Nucleon distributions and halo features
[PACS] Nuclear Density Functional Theory and extensions (includes Hartree–Fock and random-phase approximations)
[PACS] Properties of specific nuclei listed by mass ranges: 39 ≤ A ≤ 58
[PACS] Properties of specific nuclei listed by mass ranges: 59 ≤ A ≤ 89
Fecha de publicación26-oct-2007
EditorAmerican Physical Society
CitaciónPhysical Review C 76(4): 044322 (2007)
ResumenA study of the charge and matter densities and the corresponding rms radii for even-even isotopes of Ni, Kr, and Sn has been performed in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The resulting charge radii and neutron skin thicknesses of these nuclei are compared with available experimental data, as well as with other theoretical predictions. The formation of a neutron skin, which manifests itself in an excess of neutrons at distances greater than the radius of the proton distribution, is analyzed in terms of various definitions. Formation of a proton skin is shown to be unlikely. The effects of deformation on the neutron skins in even-even deformed nuclei far from the stability line are discussed.
Descripción14 pages, 1 table, 17 figures.-- PACS nrs.: 21.10.Gv; 21.60.Jz; 27.40.+z; 27.50.+e.-- ArXiv pre-print available at: http://arxiv.org/abs/0710.0542
Versión del editorhttp://dx.doi.org/10.1103/PhysRevC.76.044322
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
nuclear skin.pdf1,09 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.