English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/149378
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Analysis of Historic Copper Patinas. Influence of Inclusions on Patina Uniformity

AuthorsChang, Tingru; Odnevall Wallinder, Inger; Fuente, Daniel de la; Chico, Belén; Morcillo, Manuel; Welter, Jean-Marie; Leygraf, Christofer
Issue Date16-Mar-2017
PublisherMultidisciplinary Digital Publishing Institute
CitationMaterials 10 (3): 298 (2017)
AbstractThe morphology and elemental composition of cross sections of eight historic copper materials have been explored. The materials were taken from copper roofs installed in different middle and northern European environments from the 16th to the 19th century. All copper substrates contain inclusions of varying size, number and composition, reflecting different copper ores and production methods. The largest inclusions have a size of up to 40 μm, with most inclusions in the size ranging between 2 and 10 μm. The most common element in the inclusions is O, followed by Pb, Sb and As. Minor elements include Ni, Sn and Fe. All historic patinas exhibit quite fragmentized bilayer structures, with a thin inner layer of cuprite (Cu<sub>2</sub>O) and a thicker outer one consisting mainly of brochantite (Cu<sub>4</sub>SO<sub>4</sub>(OH)<sub>6</sub>). The extent of patina fragmentation seems to depend on the size of the inclusions, rather than on their number and elemental composition. The larger inclusions are electrochemically nobler than the surrounding copper matrix. This creates micro-galvanic effects resulting both in a profound influence on the homogeneity and morphology of historic copper patinas and in a significantly increased ratio of the thicknesses of the brochantite and cuprite layers. The results suggest that copper patinas formed during different centuries exhibit variations in uniformity and corrosion protection ability.
Publisher version (URL)http://doi.org/10.3390/ma10030298
Identifiersdoi: 10.3390/ma10030298
Appears in Collections:(CENIM) Artículos
Files in This Item:
File Description SizeFormat 
materials-10-00298.pdf4,81 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.