English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/14868
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Noisy continuous-opinion dynamics

AutorPineda, Miguel ; Toral, Raúl ; Hernández-García, Emilio
Palabras claveCollective phenomena in economic and social systems: Interacting agent models
Non-equilibrium processes: Stochastic particle dynamics (Theory)
Physics and Society
Statistical Mechanics
Cellular Automata and Lattice Gases
Fecha de publicación2-jun-2009
CitaciónarXiv:0906.0441v1 [physics.soc-ph]
ResumenWe study the Deffuant et al. model for continuous-opinion dynamics under the influence of noise. In the original version of this model, individuals meet in random pairwise encounters after which they compromise or not depending of a confidence parameter. Free will is introduced in the form of noisy perturbations: individuals are given the opportunity to change their opinion, with a given probability, to a randomly selected opinion inside the whole opinion space. We derive the master equation of this process. One of the main effects of noise is to induce an order-disorder transition. In the disordered state the opinion distribution tends to be uniform, while for the ordered state a set of well defined opinion groups are formed, although with some opinion spread inside them. Using a linear stability analysis we can derive approximate conditions for the transition between opinion groups and the disordered state. The master equation analysis is compared with direct Monte-Carlo simulations. We find that the master equation and the Monte-Carlo simulations do not always agree due to finite-size induced fluctuations that we analyze in some detail.
Descripción18 pages, 7 figures, 1 appendix.-- Published in Journal of statistical mechanics (8): P08001 (2009).-- http://dx.doi.org/10.1088/1742-5468/2009/08/P08001
Versión del editorhttp://arxiv.org/abs/0906.0441
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0906.0441v1.pdf1,22 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.