English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/148589
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorJenkins, Mark-
dc.contributor.authorZueco, David-
dc.contributor.authorRoubeau, Olivier-
dc.contributor.authorAromí, Guillem-
dc.contributor.authorMajer, J.-
dc.contributor.authorLuis, Fernando-
dc.date.accessioned2017-04-20T11:15:07Z-
dc.date.available2017-04-20T11:15:07Z-
dc.date.issued2016-
dc.identifierdoi: 10.1039/c6dt02664h-
dc.identifiere-issn: 1477-9234-
dc.identifierissn: 1477-9226-
dc.identifier.citationDalton Transactions 45(42): 16682-16693 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/148589-
dc.descriptionarXiv:1610.06091v1-
dc.description.abstractA proposal for a magnetic quantum processor that consists of individual molecular spins coupled to superconducting coplanar resonators and transmission lines is carefully examined. We derive a simple magnetic quantum electrodynamics Hamiltonian to describe the underlying physics. It is shown that these hybrid devices can perform arbitrary operations on each spin qubit and induce tunable interactions between any pair of them. The combination of these two operations ensures that the processor can perform universal quantum computations. The feasibility of this proposal is critically discussed using the results of realistic calculations, based on parameters of existing devices and molecular qubits. These results show that the proposal is feasible, provided that molecules with sufficiently long coherence times can be developed and accurately integrated into specific areas of the device. This architecture has an enormous potential for scaling up quantum computation thanks to the microscopic nature of the individual constituents, the molecules, and the possibility of using their internal spin degrees of freedom.-
dc.description.sponsorshipThe authors acknowledge funding from the Spanish Ministry of Economy and Competitivity (MINECO) through grants FIS2014-55867-P, MAT2014-53432-C5-1-R, MAT2014-53961-R, MAT2015-68204-R, and MAT2015-70868-ERC, from the European Research Council through grant ERC-2010-StG (258060 FuncMolQIP) and from a TOP grant of the Technical University of Vienna.-
dc.publisherRoyal Society of Chemistry (Great Britain)-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/258060-
dc.relationMINECO/ICTI2013-2016/MAT2015-70868-ERC-
dc.relationMINECO/ICTI2013-2016/MAT2015-68204-R-
dc.relationMINECO/ICTI2013-2016/FIS2014-55867-P-
dc.relationMINECO/ICTI2013-2016/MAT2014-53432-C5-1-R-
dc.relationMINECO/ICTI2013-2016/MAT2014-53961-R-
dc.relation.isversionofPreprint-
dc.rightsopenAccess-
dc.titleA scalable architecture for quantum computation with molecular nanomagnets-
dc.typeArtículo-
dc.identifier.doi10.1039/c6dt02664h-
dc.relation.publisherversionhttps://doi.org/10.1039/c6dt02664h-
dc.date.updated2017-04-20T11:15:07Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderUniversity of Vienna-
dc.contributor.funderEuropean Research Council-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003065es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
molecularnanomagnets.pdf1,35 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.