English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/14841
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 9 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Stochastic resonance in the presence of spatially localized structures

AutorRabbiosi, Ivan; Scroggie, Andrew J.; Oppo, Gian-Luca
Palabras clave[PACS] Chaos
[PACS] Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics
[PACS] Nonlinearity (including bifurcation theory)
[PACS] Stochastic processes
Fecha de publicación8-sep-2003
EditorAmerican Physical Society
CitaciónPhysical Review E 68(3): 036602 (2003)
ResumenStable spatially localized structures exist in a wide variety of spatially extended nonlinear systems, including nonlinear optical devices. We study stochastic resonance (SR) in models of optical parametric oscillators in the presence of a spatially uniform time-periodic driving and in a regime where two equivalent states with equal intensity but opposite phase exist. Diffraction and nonlinearity enable the existence of localized states, formed by the locking of kinks and antikinks and displaying spatially damped oscillatory tails (in one dimension) or the stabilization of dark ring cavity solitons (in two dimensions). We show that SR is inhibited at low driving amplitudes by the presence of localized states which obstruct the front motion. For larger driving amplitudes, in the regime where localized states cease to be stable, we observe instead an enhancement of SR.
Descripción10 pages, 11 figures.-- PACS nrs.: 47.52.+j, 42.65.Sf, 47.20.Ky, 02.50.Ey.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevE.68.036602
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
srsplocstr.pdf481,69 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.