English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/148131
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Femtosecond laser-controlled self-assembly of amorphous-crystalline nanogratings in silicon

AutorPuerto, D. ; García-Lechuga, Mario ; Hernández Rueda, Javier ; García-Leis, Adianez ; Sánchez-Cortés, Santiago ; Solís Céspedes, Javier ; Siegel, Jan
Palabras claveSubwavelength structures
Laser materials processing
Phase change material
Laser-induced periodic surface structures
Fecha de publicación20-may-2016
EditorInstitute of Physics Publishing
CitaciónNanotechnology 27: 265602 (2016)
ResumenSelf-assembly (SA) of molecular units to form regular, periodic extended structures is a powerful bottom-up technique for nanopatterning, inspired by nature. SA can be triggered in all classes of solid materials, for instance, by femtosecond laser pulses leading to the formation of laser-induced periodic surface structures (LIPSS) with a period slightly shorter than the laser wavelength. This approach, though, typically involves considerable material ablation, which leads to an unwanted increase of the surface roughness. We present a new strategy to fabricate high-precision nanograting structures in silicon, consisting of alternating amorphous and crystalline lines, with almost no material removal. The strategy can be applied to static irradiation experiments and can be extended into one and two dimensions by scanning the laser beam over the sample surface. We demonstrate that lines and areas with parallel nanofringe patterns can be written by an adequate choice of spot size, repetition rate and scan velocity, keeping a constant effective pulse number (N ) per area for a given laser wavelength. A deviation from this pulse number leads either to inhomogeneous or ablative structures. Furthermore, we demonstrate that this approach can be used with different laser systems having widely different wavelengths (1030 nm, 800 nm, 400 nm), pulse durations (370 fs, 100 fs) and repetition rates (500 kHz, 100 Hz, single pulse) and that the grating period can also be tuned by changing the angle of laser beam incidence. The grating structures can be erased by irradiation with a single nanosecond laser pulse, triggering recrystallization of the amorphous stripes. Given the large differences in electrical conductivity between the two phases, our structures could find new applications in nanoelectronics.
Descripción8 págs.; 5 figs.; 1 tab.
Versión del editorhttp://doi.org/10.1088/0957-4484/27/26/265602
URIhttp://hdl.handle.net/10261/148131
DOI10.1088/0957-4484/27/26/265602
Identificadoresdoi: 10.1088/0957-4484/27/26/265602
issn: 1361-6528
Aparece en las colecciones: (CFMAC-IEM) Artículos
(CFMAC-IO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
D_Puerto_a-c_Nanograting_Nanotechnology_2016.pdf9,11 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.