English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/147850
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Validity of the Néel-Arrhenius model for highly anisotropic CoxFe3−xO4 nanoparticles

AuthorsTorres, T. E.; Lima Jr., Enio; Mayoral, Alvaro; Ibarra, Alfonso; Marquina, Clara; Ibarra, M. Ricardo; Goya, Gerardo F.
Issue Date2015
PublisherAmerican Institute of Physics
CitationJournal of Applied Physics 118(18): 183902 (2015)
AbstractWe report a systematic study on the structural and magnetic properties of CoxFe3−xO4 magnetic nanoparticles with sizes between 5 and 25 nm, prepared by thermal decomposition of Fe(acac)3 and Co(acac)2. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (42 K < TB < 345 K for 5 < d < 13 nm) and large coercive fields (HC ≈ 1600 kA/m for T = 5 K). The smallest particles (⟨d⟩=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the Neel–Arrhenius relaxation framework by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T), without the need of ad-hoc corrections. This approach, using the empirical Brükhatov-Kirensky relation, provided K1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ0 ≈ 10−10s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener's relation between K1(T) and M(T).
Publisher version (URL)http://dx.doi.org/10.1063/1.4935146
Identifiersdoi: 10.1063/1.4935146
issn: 0021-8979
e-issn: 1089-7550
Appears in Collections:(ICMA) Artículos
Files in This Item:
File Description SizeFormat 
NelArrhenius.pdf2,78 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.