English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/147229
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Synaptotagmin I and IV define distinct populations of neuronal transport vesicles.

AuthorsBerton F; Cornet V; Iborra C; Garrido Jurado, Juan José ; Dargent B; Fukuda, M; Seagar M; Marquèze B
KeywordsDevelopment, Golgi, growth cone, rat synaptotagmin, synaptic vesicle
Issue Date2000
PublisherBlackwell Publishing
CitationEuropean Journal of Neuroscience 12: 1294- 1302 (2000)
AbstractMammalian synaptotagmins constitute a multigene family of at least 11 membrane proteins. We have characterized synaptotagmin IV using antibodies directed against the C2A domain of the protein. Antibodies reacted specifically with a protein band that migrated as a 41-44 kDa doublet. Synaptotagmin IV expression was regulated throughout development. A strong decrease in the amount detected by Western blotting occurred between postnatal day 5 and adulthood, in agreement with studies on the expression of synaptotagmin IV transcripts. In subcellular fractionation, synaptotagmin IV was not detected in the synaptic vesicle-enriched fraction. Immunofluorescence microscopy was concordant with this finding. In 6-day-old rat cerebellum and cultured hippocampal neurons the subcellular distribution of synaptotagmin IV was clearly different from that of synaptotagmin I. Synaptotagmin IV displayed a punctate non-polarized distribution on neuronal extensions, whereas synaptotagmin I staining was essentially synaptic. Synaptotagmin IV staining was also observed in the soma in strong perinuclear fluorescent puncta superimposed on that of Golgi/TGN markers. Furthermore, synaptotagmin IV was seen in the proximal part of the growth cone domain and not in the microfilament-rich region which includes filopodia. Co-localizations with the adhesion molecules vinculin and zyxin at the proximal part of growth cones were observed. Synaptotagmin IV may thus be involved in the regulation of specific membrane-trafficking pathways during brain development.
URIhttp://hdl.handle.net/10261/147229
DOI10.1046/j.1460-9568.2000.00013.x
Identifiersdoi: 10.1046/j.1460-9568.2000.00013.x
issn: 0953-816X
Appears in Collections:(IC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.