English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/147120
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Improving indoor positioning using an efficient Map Matching and an extended motion model

AutorZampella, Francisco ; Jiménez Ruiz, Antonio R. ; Seco Granja, Fernando
Palabras claveIndoor Positioning
Map Matching
particle filter
foot mounted Pedestrian Dead Reckoning
Position measurement
Atmospheric measurements
Particle measurements
Loss measurement
Time measurement
Fecha de publicación2015
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Vehicular Technology 64: 1304- 1317 (2015)
ResumenUnlike outdoor positioning, there is no unique solution to obtain the position of a person inside a building or in Global Navigation Satellite System (GNSS)-denied areas. Typical implementations indoor rely on dead reckoning or beacon-based positioning, but a robust estimation must combine several techniques to overcome their own drawbacks. In this paper, we present an indoor positioning system based on foot-mounted pedestrian dead reckoning (PDR) with an efficient map matching, received signal strength (RSS) measurements, and an improved motion model that includes the estimation of the turn rate bias. The system was implemented using a two-level structure with a low-level PDR filter and a high-level particle filter (PF) to include all the measurements. After studying the effect of the step displacement on the PFs proposed in the literature, we concluded that a new state with the turn rate bias (a nonobservable state in PDR) is needed to correctly estimate the error growth and, in the long term, correct the position and heading estimation. Additionally, the wall crossing detection of map matching was optimized as matrix operations, and a room grouping algorithm was proposed as a way to accelerate the process, achieving real-time execution with more than 100 000 particles in a building with more than 600 wall segments. We also include a basic path-loss model to use RSS measurements that allows a better initialization of the filter, fewer particles, and faster convergence, without the need for an extensive calibration. The inclusion of the map matching algorithm lowers the error level of the RSS-PDR positioning, from 1.9 to 0.75 m, 90% of the time. The system is tested in several trajectories to show the improvement in the estimated positioning, the time to convergence, and the required number of particles
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.