English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/146534
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Landmark-based music recognition system optimisation using genetic algorithms

AutorGutiérrez, Salvador; García, Salvador
Palabras claveAudio fingerprinting: Parameter optimisation
Genetic algorithms
Music recognition
Fecha de publicacióndic-2016
EditorSpringer
CitaciónMultimedia Tools and Applications 75(24): 16905-16922 (2016)
ResumenAudio fingerprinting allows us to label an unidentified music fragment within a previously generated database. The use of spectral landmarks aims to obtain a robustness that lets a certain level of noise be present in the audio query. This group of audio identification algorithms holds several configuration parameters whose values are usually chosen based upon the researcher’s knowledge, previous published experimentation or just trial and error methods. In this paper we describe the whole optimisation process of a Landmark-based Music Recognition System using genetic algorithms. We define the actual structure of the algorithm as a chromosome by transforming its high relevant parameters into various genes and building up an appropriate fitness evaluation method. The optimised output parameters are used to set up a complete system that is compared with a non-optimised one by designing an unbiased evaluation model.
Versión del editorhttp://doi.org/10.1007/s11042-015-2963-0
URIhttp://hdl.handle.net/10261/146534
DOI10.1007/s11042-015-2963-0
Identificadorese-issn: 1573-7721
issn: 1380-7501
Aparece en las colecciones: (ICVV) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.